
📘 MaxAudit – Fork Registry Integration 
Version: 1.0 
Issued by: SAC, Take Back Your Data (TBYD) 
License: MaxOneOpen License v2.2 – Structurally Enforced 

 

1. Purpose 
This document outlines the integration of MaxAudit with the Fork Registry. The goal is to 
ensure that every audit output references a specific, immutable Fork ID, enabling traceability 
across all variations of MaxOne-based infrastructures. 

2. Definition of a Fork 
A Fork is a legally and technically certified structural variant of a MaxOne instance. Each Fork 
is registered with a unique cryptographic identity and profile schema. Audits must be aligned 
to the exact Fork schema in use to be considered valid. 

3. Registry Anchoring 
- Every audit protocol includes a signed Fork ID reference 
- The Fork ID is hash-anchored and timestamped within the audit chain 
- Forks must be pre-registered in the global Fork Registry 
- Operators may define private forks but lose audit eligibility unless registered 

4. Verification Behavior 
- During the audit, the system profile is matched against the Fork definition 
- Deviations outside the Fork definition automatically escalate the audit status 
- Fork mismatch is treated as a structural deviation (Level 2) 
- Fork spoofing triggers a red audit result (tamper class) 

5. Registry Interaction Logic 
- Dongle: reads Fork ID locally; does not require live registry access 
- Verifier: pulls Fork definition from offline mirror or preloaded cache 
- Fork profile hash is validated against signed registry snapshot 
- No external connectivity required for any validation step 

6. Lifecycle & Governance 
- Forks must be reviewed annually to remain in active registry 
- Each Fork is bound to a specific operator or jurisdictional body 
- Retired Forks remain verifiable for archival audits 
- The registry is public, append-only, and cryptographically secured 


